

Ecology of epiphytic lichens

Dr. Hannah Buckley Department of Ecology, Lincoln University

My research interests

- Spatial patterns in community structure at multiple scales
 - Species richness
 - Species composition
 - Species' distributions
 - Species' traits
- Interactions between ecological and evolutionary processes

New Zealand's specialist land-based university

Lichens

- A symbiosis between a fungus and at least one photobiont
- Photobionts:
 - Green algae
 - Cyanobacteria

http://biology-pictures.blogspot.co.nz

Epiphytic Lichens as a Model System

- Multiple taxa in a single thallus
- Functionally and reproductively variable
- Structurally relatively simple communities
- Quick to sample
- Spatially discrete

Epiphytic lichen community ecology

Question: What determines the structure of epiphytic lichen communities?

- Habitat preferences
- Species interactions
- Population dynamics (e.g., dispersal)

The Flock Hill study system

- Colonisation-dominated community assembly
- Shorter, isolated trees
- Less complex communities of lower species richness

Methods

- Approx. 48 ha study area
- Sampled 374 trees
- Collected lichen specimens up to 2m
- Environmental variables recorded

Habitat conditions and distance from source affected species richness

Total richness = 56 lichens on 374 trees

Variable	Estimate	LRT	<i>P</i> -value
	(Std. Err.)		
Trunk diameter (linear term)	0.74 (0.04)	285.9	< 0.001
Trunk diameter (quadratic term)	-0.08 (0.01)	58.8	< 0.001
Percent cover of sooty mould	-0.11 (0.02)	22.3	< 0.001
Distance to forest	-0.08 (0.02)	16.0	< 0.001
Dracophyllum spp. presence within 2m radius of tree	0.18 (0.05)	11.5	< 0.001
Tree density within 5m radius of tree	-0.05 (0.02)	4.6	0.032
Percent rough bark on trunk below 2m	0.06 (0.03)	4.0	0.046

Molecular ecology

- How do ecological and evolutionary factors interact to determine symbiosis structure?
 - Fungal specificity and selectivity
- How are lichen symbiont populations structured spatially?

Fungal specificity across taxonomic and spatial scales

- Between lichen variation:
 - A range of lichen taxa from Flock Hill $(N = 43^*)$
- Within site variation:
 - Usnea specimens from Flock Hill (N = 86)
- Between site variation:
 - Usnea specimens from sites around NZ ($N = 25^*$)

Preliminary dataset; more samples to be added

At each scale:

- Sequenced DNA (internal transcribed spacer region: ITS) from both fungal and algal partners
- Built separate Bayesian phylogenetic trees for each partner
- Used randomisations to test for consistency in associations between partners (co-diversification)

Usnea spp only

- Within site variation (Flock Hill Usnea)
 - Geographic location was important

- Even after accounting for this, there was still a co-diversification pattern (P < 0.001)

Usnea spp

- Between site variation (NZ Usnea)
 - Geographic location wasn't important
 - Strong co-diversification pattern (P < 0.001)

- Both studies show that spatial effects (e.g., habitat effects and dispersal) are important for lichen ecology, from a single thallus to the community level
- The structure of the lichen symbiosis appears to also be the result of evolutionary processes (co-diversification)

Ongoing research using epiphytic lichens

Spatial patterns in community structure

Functional trait patterns

Macroecology

North American epiphytic lichens

Molecular Ecology

- Genetic structuring at multiple spatial scales
- Free living vs. obligate symbionts

Acknowledgements

- Arash Rafat (PhD student), Johnathon Ridden (UG student)
- Rob Cruickshank and Hayley Ridgeway (collaborators)
- Elizabeth Bargh, Ursula Brandes, Hamish Maule, Florent Mazel, Ben Myles and Natalie Scott (specimen collection and field crew)
- Ben Myles, David Galloway, Jennifer Bannister, Alison Knight (lichen identification)
- Flock Hill Station manager Richard Hill (land access permission)
- Lincoln University, the Brian Mason Trust and Bayer Boost scholarships (research funding)
- The Lincoln University Spatial Ecology Group (discussion)

Related publications

- Dent, JM., Curran, TJ., Rafat, A., Buckley, HL. *Submitted*. Microhabitat variation in *Usnea* spp. biomass on mountain beech in Nina Valley, New Zealand. *New Zealand Journal of Botany*.
- Buckley, HL. 2011. Isolation affects tree-scale epiphytic lichen community structure on New Zealand mountain beech trees. *Journal of Vegetation Science* 22: 1062–1071.
- Buckley, HL. 2002a. Vascular plant and epiphytic lichen communities in Canadian aspen parkland: scale-dependence of species-area relationships. *Community Ecology* 3(1): 59-67.
- Buckley, HL. 2002b. Vascular plant and epiphytic lichen communities in Canadian aspen parkland: determinants of species richness. *Community Ecology* 3(1): 69-78

